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Abstract
Recently, the Tensor Nuclear Norm (TNN) regularization based on t-SVD has been widely 
used in various low tubal-rank tensor recovery tasks. However, these models usually require 
smooth change of data along the third dimension to ensure their low rank structures. In this 
paper, we propose a new definition of data dependent tensor rank named tensor Q-rank by 
a learnable orthogonal matrix � , and further introduce a unified data dependent low rank 
tensor recovery model. According to the low rank hypothesis, we introduce two explain-
able selection methods of � , under which the data tensor may have a more significant low 
tensor Q-rank structure than that of low tubal-rank structure. Specifically, maximizing the 
variance of singular value distribution leads to Variance Maximization Tensor Q-Nuclear 
norm (VMTQN), while minimizing the value of nuclear norm through manifold optimi-
zation leads to Manifold Optimization Tensor Q-Nuclear norm (MOTQN). Moreover, we 
apply these two models to the low rank tensor completion problem, and then give an effec-
tive algorithm and briefly analyze why our method works better than TNN based methods 
in the case of complex data with low sampling rate. Finally, experimental results on real-
world datasets demonstrate the superiority of our proposed models in the tensor comple-
tion problem with respect to other tensor rank regularization models.
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1 Introduction

With the development of data science, multi-dimensional data structures are becoming 
more and more complex. The low-rank tensor recovery problem, which aims to recover 
a low-rank tensor from an observed tensor, has also been extensively studied and applied. 
The problem can be formulated as the following model:

where Y is the observed measurement by a linear operator � (⋅) and X  is the clean data. 
Generally, it is difficult to solve Eq. (1) directly, and different rank definitions correspond 
to different models. The commonly used definitions of tensor rank are all related to par-
ticular tensor decompositions (Kolda and Bader 2009). For example, CP-rank (Hitchcock 
1927) is based on the CANDECOMP/PARAFAC decomposition  (Kiers 2000); multilin-
ear rank  (Hitchcock 1928) is based on the Tucker decomposition  (Tucker 1966); tensor 
multi-rank and tubal-rank  (Kilmer et  al. 2013) are based on t-SVD  (Kilmer and Martin 
2011); and a new tensor rank with invertible linear operator (Lu et al. 2019) is based on 
T-SVD (Kernfeld et al. 2015). Among them, CP-rank and multilinear rank are both older 
and more widely studied, while the remaining two mentioned here are relatively new. Mini-
mizing the rank function in Eq. (1) directly is usually NP-hard and is difficult to be solved 
within polynomial time, hence we often replace rank(X) by a convex/non-convex surrogate 
function. Similar to the matrix case (Candès and Recht 2009; Candès and Tao 2010), with 
different definitions of tensor singular values, various tensor nuclear norms are proposed as 
the rank surrogates (Liu et al. 2013; Friedland and Lim 2018; Kilmer and Martin 2011; Lu 
et al. 2019).

1.1  Existing mainstream methods and their limitations

Friedland and Lim (2018) introduce cTNN (Tensor Nuclear Norm based on CP) as the 
convex relaxation of the tensor CP-rank:

where ‖�i‖ = ‖�i‖ = ‖�i‖ = 1 and ◦ represents the vector outer product.1 However, for 
a given tensor T ∈ ℝ

n1×n2×n3 , minimizing the surrogate objection ‖T‖cTNN directly is dif-
ficult due to the fact that computing CP-rank is usually NP-complete (Håstad 1990; Hillar 
and Lim 2013) and computing cTNN is NP-hard in some sense (Friedland and Lim 2018), 
which also mean we cannot verify the consistency of cTNN’s implicit decomposition with 
the ground-truth CP-decomposition. Meanwhile, it is hard to measure the cTNN’s tightness 
relative to the CP-rank.2 Although  Yuan and Zhang (2016) give the sub-gradient of cTNN 
by leveraging its dual property, the high computational cost makes it difficult to implement.

(1)min
X

rank(X), s.t. � (X) = Y,

(2)‖T‖cTNN = inf

�
r�

i=1

��i� ∶ T =

r�
i=1

�i�i◦�i◦�i

�
,

1 Please see Kolda and Bader (2009) or our supplementary materials for more details.
2 For the matrix case, the nuclear norm is the conjugate of the conjugate function of the rank function in 
the unit ball. However, it is still unknown whether this property holds for cTNN and CP-rank.
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To reduce the computation cost of computing the rank surrogate function,  Liu et  al. 
(2013) define a kind of tensor nuclear norm named SNN (Sum of Nuclear Norm) based on 
the Tucker decomposition (Tucker 1966):

where T ∈ ℝ
n1×⋯×nd , �(i) ∈ ℝ

(n1…ni−1ni+1…nd)×ni denotes unfolding the tensor along the ith 
dimension, and ‖ ⋅ ‖∗ is the nuclear norm of a matrix, i.e., sum of singular values. The 
convenient calculation algorithm makes SNN widely used (Fu et al. 2016; Liu et al. 2015, 
2013; Kasai and Mishra 2016; Li et al. 2016). It is worth to mentioned that, although SNN 
has a similar representation to matrix case,  Romera-Paredes and Pontil (2013) point out 
that SNN is not the tightest convex relaxation of the multilinear rank (Hitchcock 1928), and 
is actually an overlap regularization of it. References Tomioka et al. (2010); Tomioka and 
Suzuki (2013); Wimalawarne et  al. (2014) also propose a new regularizer named Latent 
Trace Norm to better approximate the tensor rank function. In addition, due to unfolding 
the tensor directly along each dimension, the information utilization of SNN based model 
is insufficient.

To avoid information loss in SNN,  Kilmer and Martin (2011) propose a tensor decom-
position named t-SVD with a Fourier transform matrix � , and  Zhang et al. (2014) give a 
definition of the tensor nuclear norm on T ∈ ℝ

n1×n2×n3 corresponding to t-SVD, i.e., Tensor 
Nuclear Norm (TNN):

where �(i) denotes the ith frontal slice matrix of tensor G,3 and ×3 is the mode-3 multilin-
ear multiplication (Tucker 1966). Benefitting from the efficient Discrete Fourier transform 
and the better sampling effect of Fourier basis on time series features, TNN has attracted 
extensive attention in recent years (Zhang et al. 2014; Lu et al. 2016, 2018; Yin et al. 2018; 
Hu et al. 2016). The operation of Fourier transform along the third dimension makes TNN 
based models have a natural computing advantage for video and other data with strong 
time continuity along a certain dimension.

However, when considering the smoothness of different data, using a fixed Fourier 
transform matrix � may bring some limitations. In this paper, we define smooth and non-
smooth data along a certain dimension as the usual intuitive meaning, which means the 
slices of tensor data along a dimension are arranged in a certain paradigm, e.g., time series. 
For example, a continuous video data is smooth. But if the data tensor is a concatenation 
of several different scene videos or a random arrangement of all frames, then the data is 
non-smooth.

Firstly, TNN needs to implement Singular Value Decomposition (SVD) in the complex 
field ℂ , which is slightly slower than that in the real field ℝ . Besides, the experiments in 
related papers (Zhang et al. 2014; Lu et al. 2018; Zhou et al. 2018; Kong et al. 2018) are 
usually based on some special dataset which have smooth change along the third dimen-
sion, such as RGB images and short videos. Those non-smooth data may increase the 

(3)‖T‖SNN =

d�
i=1

����(i)
���∗,

(4)‖T‖TNN ∶=
1

n3

n3�
i=1

����
(i)���∗, where G = T ×3 �,

3 The implementation of Fourier transform along the third dimension of T  is equivalent to multiplying a 
DFT matrix � by using ×3 . For more details, please see Sect. 2.2.
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number of non-zero tensor singular values (Kilmer and Martin 2011; Zhang et al. 2014), 
weakening the significance of low rank structure. Since tensor multi-rank  (Zhang et  al. 
2014) is actually the rank of each projection matrix on different Fourier basis, the non-
smooth change along the third dimension may lead to large singular values appearing on 
the projection matrix slices which are corresponding to the high frequency.

1.2  Related work

In order to solve the above phenomenon, there are some works (Kernfeld et al. 2015; Xu 
et al. 2019; Song et al. 2019; Lu et al. 2019; Jiang et al. 2020) that consider to improve the 
projection matrix of TNN, i.e., the Discrete Fourier transform matrix � in Eq. (4). These 
work want to replace � by another measurement matrix � and further obtain new defini-
tions of tensor rank rankM(X) and tensor nuclear norm ‖X‖M,∗ as regularizers. Figure  1 
shows the related operations. Their recovery models can be summarized as follows:

Please see Sect. 2 for the relevant definitions in Eq. (5). In the following, we will discuss 
the motivations and limitations of these work (Kernfeld et al. 2015; Xu et al. 2019; Song 
et al. 2019; Lu et al. 2019; Jiang et al. 2020), respectively.

Kernfeld et  al. (2015) generalize the t-product by introducing a new operator named 
cosine transform product with an arbitrary invertible linear transform L  (or arbitrary 
invertible matrix � ). For a given T ∈ ℝ

n1×n2×n3 and an invertible matrix � ∈ ℝ
n3×n3 , 

they have L�(T) = T ×3 � and L−1
�
(T) = T ×3 �

−1 . Different from the commonly used 
definition of tensor mode-i product in Kolda and Bader (2009); Liu et  al. (2013); Kern-
feld et  al. (2015); Lu et  al. (2019), it should be mentioned that for convenience in this 
paper, we define L�(T) = T ×3 � = fold3(�(3)�) , where �(3) ∈ ℝ

n1n2×n3 and is defined by 
�(3) ∶= unfold3(T) . That is to say, we arrange the tensor fiber Tij∶ by rows.

Following this idea, Lu et  al. (2019) propose a new tensor nuclear norm induced by 
invertible linear transforms  (Kernfeld et  al. 2015). Different from  Kilmer and Martin 
(2011); Zhang et al. (2014), they use an fixed invertible matrix to replace the Fourier trans-
form matrix in TNN. Although this method improves the performance of the recovery 
model to a certain extent, some new problems still arise, such as how to determine the 
fixed invertible matrix. Normally, different data need different optimal invertible matrix, 
but a reasonable matrix selection method is not given in Lu et al. (2019). Furthermore, the 
Frobenius norm of the invertible matrix is uncertain, which may lead to some computa-
tional problems, e.g., approaching zero or infinity.

(5)min
X

‖X‖M,∗, s.t. � (X) = Y, � is determined by some prior knowledge.

Fig. 1  Replace � in Eq. (4) by 
matrix � and further obtain 
new definitions of tensor rank 
rank

M
(X) and tensor nuclear 

norm ‖X‖
M,∗ by using �(i)
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Additionally, Kernfeld et al. (2015) propose an idea that, with the help of Toeplitz-plus-
Hankel matrix (Ng et al. 1999), the Discrete cosine transform matrix � can also be used to 
replace � . Then the work Xu et al. (2019) propose some fast algorithms for diagonalization 
and the relevant recovery model. However, � is still based on trigonometric function, and 
may lead to the similar problems with TNN based model, as we mentioned in the last para-
graph of Sect. 1.1.

Considering the efficiency of time-space transformation, the work Song et al. (2019) use 
the Daubechies 4 discrete wavelet transform matrix to replace � . As we know, the wavelet 
transform can take the position information into account, which may make it better than 
Fourier transform and cosine transform in handling some special data, e.g., audio data. 
However, many wavelet bases generate transform matrices in exponential form, which 
means the large scale wavelet matrix may bring the problem of computational complexity.

Regardless of the computational complexity, Jiang et al. (2020) introduce a new projec-
tion matrix named tight framelets transform matrix  (Cai et  al. 2008; Jiang et  al. 2018). 
They claim that redundancy in the transformation is important as such transformed coef-
ficients can contain information of missing data in the original domain (Cai et al. 2008). 
However, we consider that redundancy is not a sufficient condition to improve the effect of 
recovery model shown in Eq. (5).

In summary, different multipliers � in Eq. (5) lead to different definitions of regular-
izer, which may lead to different experimental results. However, there is still no unified 
rules for selecting � . It can be seen from the above methods that when � is selected as 
orthogonal matrix, it is convenient for calculation and interpretation. In general, projec-
tion bases are unit orthogonal. We further think that each kind of data should have its best 
matching matrix, i.e., � could be data dependent. In this paper, we solve the problem of 
how to define a better data dependent orthogonal transformation matrix.

1.3  Motivation

In the tensor completion task, we find that when dealing with some non-smooth data, 
Tensor Nuclear Norm  (TNN) based methods usually perform worse than the cases with 
smooth data. Therefore, we want to improve this phenomenon by changing the projection 
basis � in Eq. (4). In other words, we provide some interpretable selection criteria of � in 
Eq. (5), e.g., make � be an orthogonal matrix and data dependent w.r.t. the data tensor X  . 
The following gives the details:

Whether in the case of matrix recovery (Candès and Recht 2009; Candès and Tao 2010) 
or tensor recovery (Zhang and Aeron 2017; Lu et al. 2018, 2019), the low rank hypothesis 
is very important. Generally speaking, the lower the rank of the data, the easier it is to 
recover with fewer observations. As can be seen from Fig. 2, we can use a better � to make 
the low rank structure of the non-smooth data more significant.

Considering the convex relaxation, the low rank property is usually represented by (a): 
the distribution of singular values, or (b): the value of nuclear norm. We may as well 
take these two points as priori knowledge respectively, and specify the selection rules of � 
in Eq. (6), so that the low rank property of X  can be better reflected. Therefore, we provide 
two methods in this paper as follows:

(6)min
X,�

‖X‖Q,∗, s.t. 𝛹 (X) = Y, �⊤� = �, � is determined by X.
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(a): Let � satisfy a certain selection method to make more tensor singular values close 
to 0 while the remaining ones are far from 0. From another perspective, the distribution 
variance of singular values should be larger, which leads to Variance Maximization Tensor 
Q-Nuclear norm (VMTQN) in Sect. 3.1.

(b): Let � minimize the nuclear norm ‖X‖Q,∗ directly, leading to a bilevel problem. As 
we know, nuclear norm is usually used as an surrogate function of the rank function. Then 
we use some manifold optimization method to solve the problem, which leads to Manifold 
Optimization Tensor Q-Nuclear norm (MOTQN) in Sect. 3.2.

1.4  Contributions

In summary, our main contributions include:

– We propose a unified data dependent low rank tensor recovery model which is shown 
in Eq. (6). Among them, the corresponding definitions of tensor Q-rank rankQ(X) and 
tensor Q-nuclear norm ‖X‖Q,∗ are proposed along with the learnable data dependent 
orthogonal �.

– From the low rank hypothesis, we consider the distribution of singular values and the 
value of nuclear norm as prior knowledge respectively, leading to two different selec-
tion rules of � . It should be noted that both methods are designed to make the low rank 
structure more significant. Figure 2 shows an example with background changing video 
data that, under our proposed selection of � , our low rank structure is more significant.

– For each method, we give relatively complete theoretical derivations, including inter-
pretation and optimization. As for VMTQN in Sect. 3.1, we start from variance maxi-
mization and use Theorem 2 to associate �2,1 norm minimization with singular value 
decomposition, and further make � select as the matrix of right singular vectors. On the 
other hand, MOTQN in Sect. 3.2 minimizes the nuclear norm directly and use manifold 
optimization algorithm to update � in each iteration.

– Finally, we apply our proposed regularizers with adaptive � to the tensor completion 
problem. We analyze the computational complexity, convergence and performance 
guarantee of our algorithm to a certain extent. Moreover, we explain why the more sig-
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Fig. 2  Compare the two different low rank structures between our proposed regularization and TNN 
regularization in non-smooth video data. Left: the first 500 sorted singular values by TNN regulariza-
tion (divided by 

√
n3 ) and ours. Right: the short video with background changes
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nificant the low rank structure, the easier the data can be recovered, which corresponds 
to our motivation.

2  Notations and preliminaries

2.1  Notations

We introduce some notations and necessary definitions which will be used later. Tensors 
are represented by uppercase calligraphic letters, e.g., T  . Matrices are represented by bold-
face uppercase letters, e.g., � . Vectors are represented by boldface lowercase letters, e.g., 
� . Scalars are represented by lowercase letters, e.g., s. Given a third-order tensor 
T ∈ ℝ

n1×n2×n3 , we use �(k) to represent its kth frontal slice T(∶, ∶, k) while its (i, j, k)th entry 
is represented as Tijk . �i(�) denotes the ith largest singular value of matrix � . �+ denotes 
the pseudo-inverse matrix of � . ‖�‖� = �1(�) denotes the matrix spectral norm. 
‖�‖∗ = ∑min{n1,n2}

i=1
�i(�) denotes the matrix nuclear norm and ‖�‖2,1 = ∑n2

j=1

�∑n1
i=1

�2
ij
 

denotes the matrix �2,1 norm, where � ∈ ℝ
n1×n2 and �ij is the (i, j)th entry of �.

�(3) ∈ ℝ
n1n2×n3 denotes unfolding the tensor T  along the 3rd dimension by rows, which 

is little different from Kolda and Bader (2009); Kernfeld et al. (2015). That is to say, we 
arrange the tensor fiber Tij∶ by rows. We then define L�(T) = T ×3 � = fold3(�(3)�) and 
have L−1

�
(T) = T ×3 �

−1 , where �(3) ∈ ℝ
n1n2×n3 and is defined by �(3) ∶= unfold3(T) . 

Due to limited space, for the definitions of PT   (Lu et  al. 2016), multilinear multiplica-
tion (Tucker 1966), t-product (Kilmer and Martin 2011), and so on, please see our Supple-
mentary Materials.

2.2  Tensor Q‑rank

For a given tensor X ∈ ℝ
n1×n2×n3 and a Fourier transform matrix � ∈ ℂ

n3×n3 , if we use �(i) 
to represent the ith frontal slice of tensor G , then the tensor multi-rank and Tensor Nuclear 
Norm (TNN) of X  can be formulated by mode-3 multilinear multiplication as follows:

Comparing with CP-rank and cTNN mentioned in Sect. 1.1, it is quite easy to calculate 
Eqs. (7) and (8) through the matrix Singular Value Decomposition (SVD). Kernfeld et al. 
(2015) generalize the t-product by introducing a new operator named cosine transform 
product with an arbitrary invertible linear transform L  (or arbitrary invertible matrix � ). 
For an invertible matrix � ∈ ℝ

n3×n3 , they have L�(X) = X ×3 � and L−1
�
(X) = X ×3 �

−1.
Here, we further define the invertible multiplier � as any general real orthogonal matrix. 

It is worth mentioning that the orthogonal matrix � has two good properties: one is invert-
ibility, the other is to keep Frobenius norm invariant, i.e., ‖X‖F = ‖L�(X)‖F . Then we 
introduce a new definition of tensor rank named Tensor Q-rank.

(7)rankm ∶=
{
(r1,… , rn3 )

|| ri = rank(�(i)),G = X ×3 �
}
,

(8)‖X‖∗ ∶= 1

n3

n3�
i=1

����
(i)���∗, where G = X ×3 �.
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Definition 1 (Tensor Q-rank) Given a tensor X ∈ ℝ
n1×n2×n3 and a fixed real orthogonal 

matrix � ∈ ℝ
n3×n3 , the tensor Q-rank of T  is defined as the following:

The corresponding low rank tensor recovery model can be written as follows:

Generally in the low rank recovery models, due to the discontinuity and non-convexity 
of the rank function, it is quite difficult to minimize the rank function directly. Therefore, 
some auxiliary definitions of tensor singular value and tensor norm are needed to relax the 
rank function.

2.3  Definitions of tensor singular value and tensor norm

Considering the superior recovery performance of TNN in many existing tasks, e.g., video 
denoising (Lu et al. 2019) and subspace clustering (Yin et al. 2018), we can use the simi-
lar singular value definition of TNN. Given a tensor X ∈ ℝ

n1×n2×n3 and a fixed orthogo-
nal matrix � such that G = L�(X) , then the �-singular value of X  is defined as {�j(�(i))} , 
where i = 1,… , n3 , j = 1,… , min{n1, n2} , �(i) is the i-the frontal slice of G , and �(⋅) 
denotes the matrix singular value. When an orthogonal matrix � is fixed, the correspond-
ing tensor spectral norm and tensor nuclear norm of X  can also be given.

Definition 2 (Tensor Q-spectral norm and Tensor Q-nuclear norm) Given a tensor 
X ∈ ℝ

n1×n2×n3 and a fixed real orthogonal matrix � ∈ ℝ
n3×n3 , the tensor Q-spectral norm 

and tensor Q-nuclear norm of X  are defined as the followings:

Moreover, with any fixed orthogonal matrix � , the convexity, duality, and envelope 
properties are all preserved.

Property 1 (Convexity) Tensor Q-nuclear norm and Tensor Q-spectral norm are both 
convex.

Property 2 (Duality) Tensor Q-nuclear norm is the dual norm of Tensor Q-spectral norm, 
and vice versa.

Property 3 (Convex envelope) Tensor Q-nuclear norm is the tightest convex envelope of 
the Tensor Q-rank within the unit ball of the Tensor Q-spectral norm.

These three properties are quite important in the low rank recovery theory. Property 3 
implies that we can use the tensor Q-nuclear norm as a rank surrogate. That is to say, when 

(9)rankQ(X) ∶=

n3∑
i=1

rank(�(i)), where G = L�(X) = T ×3 �.

(10)min
X

rankQ(X), s.t. � (X) = Y.

(11)‖X‖Q,� ∶= max
i

�����
(i)����

��� G = L�(X)
�
.

(12)‖X‖Q,∗ ∶=
n3�
i=1

����
(i)���∗, where G = L�(X).
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the orthogonal matrix � is given, we can replace the low tensor Q-rank model (10) with 
model (13) to recover the original tensor:

In some cases, we will encounter the case that � is not a square matrix, i.e., � ∈ ℝ
n3×r is 

column orthonormal. Then the corresponding definitions of rankQ(X) in Eq. (9) and ‖X‖Q,∗ 
in Eq.  (12) also change to the sum of r frontal slices instead of n3 . Moreover, as for the 
convex envelope property, the double conjugate function of rank function rankQ(X) is still 
the corresponding nuclear norm ‖X‖Q,∗ within an unit ball. We give the following theorem 
to illustrate this case:

Theorem  1 Given a tensor T ∈ ℝ
n1×n2×n3 and a fixed real column orthonormal matrix 

� ∈ ℝ
n3×r . Let �

⟂
∈ ℝ

n3×(n3−r) be the column complement matrix of � , and �t =
[
� �

⟂

]
 

be a orthogonal matrix. Then within the unit ball D = {X�‖X‖Qt
≤ 1} , the double conju-

gate function of rankQ(X) is ‖X‖Q,∗:

In other words, ‖X‖Q,∗ is still the tightest convex envelope of rank∗∗
Q
(X) within the unit ball 

D.

Theorem 1 indicate that even if � is not a square matrix, Eq. (13) can still be used as an 
effective recovery model.

3  Two ways for determining � : maximizing variance & Stiefel manifold 
optimization

In practical problems, the selection of � often has a tremendous impact on the performance 
of the model (13). If � is an identity matrix � , it is equivalent to solving each frontal slice 
separately by the low rank matrix methods (Candès and Recht 2009). Or if � is a Fourier 
transform matrix � , it is equivalent to the TNN-based methods (Zhang et al. 2014; Lu et al. 
2016; Zhang and Aeron 2017). Through the analysis of Lu et al. (2019) and our previous 
section, for a given data X  , those � that make rankQ(X) lower usually make the recovery 
problem (13) easier.

Following, if we let � in Eqs. (10) and (13) be a learnable variable w.r.t. data tensor X  , 
we can get a data-dependent tensor rank and corresponding low rank recovery model:

Easy to see that Eq.  (15) is actually a bilevel model and is usually hard to be solved 
directly. In the following, we will show two ways to solve this problem from the following 
two perspectives: 

1. One is to use the prior knowledge of X  to specify the selection criteria of � . For the low 
rank hypothesis, we usually measure it by the distribution of singular values. Therefore, 
we consider artificially specifying the conditions that � should satisfy so as to maximize 
the variance of the corresponding singular values.

(13)min
X

‖X‖Q,∗, s.t. � (X) = Y.

(14)rank∗∗
Q
(X) = ‖X‖Q,∗.

(15)min
X,�

‖X‖Q,∗, s.t. � (X) = Y, � is determined by X.
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2. The other is to give the function � = argmin f (X,�) = argmin ‖X‖Q,∗ and then use 
manifold optimization to solve the bilevel model directly. That is to say, We directly 
minimize the surrogate function of rank function (Property 3 and Theorem 1). It should 
be noted that although this way has higher rationality, it corresponds to a higher com-
putational complexity.

From the above two perspectives, � will be data dependent. In the following, we will intro-
duce our two methods in two sub-sections respectively (Sects. 3.1 and 3.2). And in the last 
part (Sect. 3.3), considering a third-order tensor X ∈ ℝ

n1×n2×n3 , we analyze the applicability 
of each method in two different situations, i.e., n1n2 < n3 and n1n2 > n3.

3.1  Way I (VMTQN): specify the selection of � by variance maximization

Let G = L�(X) = X ×3 � and {�(i)}i denotes the frontal slices of G . We hope to find a 
data-dependent L� in Eqs. (12) and (13) instead of L� in TNN (Eq. (8)), which can reduce 
the number of non-zero singular values of each projected slices �(i) . Our analyses are as 
follows.

(1) If we make � an orthogonal matrix, then it is also invertible. By using the unitary 
invariance of the Frobenius norm, the sum of the squares of each projected slice’s Frobe-
nius norm is a constant C, i.e., 

∑n3
i=1

‖�(i)‖2
F
= ‖X‖2

F
= C . Therefore, we need to consider 

how to select � to make more singular values of {�(i)} close to zero while the square sum 
of all singular values is a constant, i.e., 

∑n3
j=1

�j(�
(i))2 = C.

(2) Considering the definitions of tensor rank, tensor norm and tensor singular value 
corresponding to TNN in Zhang et al. (2014); Zhang and Aeron (2017), and tensor Q-rank 
in this paper, the matrix inequality 1

n

∑n

j=1
�j(�

(i)) ≤ ‖�(i)‖� ≤ ‖�(i)‖F  (singular value, 
spectral norm and Frobenius norm, respectively) implies that, the closer ‖ ⋅ ‖F is to zero, 
the more singular values are close to zero, which will lead to a more significant tensor low 
rank structure (w.r.t. rankQ(X) ) with high probability.

3.1.1  From variance maximization to singular matrix

Combined with above two points, it is easy to see that we need to make more ‖�(i)‖F close 
to 0 while the sum of squares 

∑n3
i=1

‖�(i)‖2
F
 is a constant C. From the perspective of vari-

able distribution, we need to choose a data-dependent � to maximize the distribution vari-
ance of {‖�(i)‖F} , where G = L�(X) and �(i) is the ith frontal slice matrix of G . For better 
explanations, we give the following two lemmas, and the optimality condition of Lemma 1 
illustrate our hypothesis that there should be more ‖�(i)‖F close to 0.4

Lemma 1 Given n non-negative variables {a1, a2,… , an} such that 
∑n

i=1
a2
i
= C , then 

maximizing the variance Var[ai] is equivalent to minimizing the summation 
∑n

i=1
ai . Moreo-

ver, the optimal condition is that there is only one non-zero variable in {a1, a2,… , an} . 
Please see “Appendix A” for proof.

4 Notice that minimizing 
∑n

i=1
a
i
 in Lemma  1 can be seen as a linear hyperplane optimization problem 

defined in the first quadrant Euclidean spherical surface: {(a1,… , a
n
)�∑n

i=1
a
2

i
= C, a

i
≥ 0} . The intersec-

tion of sphere and each axis is distributed on the optimal hyperplane, which corresponds to only one non-
zero coordinate (more variables close to 0).
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By using Lemma 1, maximizing the variance of {‖�(i)‖F} is equivalent to minimizing 
the sum 

∑n3
i=1

‖�(i)‖F . Then we have 
∑n3

i=1
‖�(i)‖F = ‖�(3)‖2,1 = ‖�(3)�‖2,1 , where �(3) 

and �(3) denote the mode-3 unfolding matrices (Tucker 1966).

Lemma 2 Given a fixed matrix � ∈ ℝ
n1×n2 , and its full Singular Value Decomposition as 

� = �𝛴�⊤ with � ∈ ℝ
n1×n1 , � ∈ ℝ

n1×n2 , and � ∈ ℝ
n2×n2 . Then the matrix of right singular 

vectors � optimizes the following:

where ‖�‖2,1 = ∑col

i=1
‖�∶,i‖2 is the sum of the �2 norms of all column vectors. Please see 

“Appendix B” for proof.

Lemma 1 turns the maximizing variance problem into minimizing summation problem, 
while Lemma 2 gives a feasible solution to the problem of minimizing the summation of 
�2 norm. However, when n1 ≤ n2 , there will be some zero-columns appearing in � . We can 
use skinny SVD to reduce the redundant columns of � in Eq. (16). Note that the size of � 
in skinny SVD is related to the size of � . Considering the two cases n1 ≥ n2 and n1 < n2 of 
� ∈ ℝ

n1×n2 , we introduce an auxiliary variable r = min{n1, n2} to unify the matrix of right 
singular vectors as � ∈ ℝ

n2×r . Furthermore, we need add an extra constraint ���⊤ = � 
to avoid the trivial solution when r < n2 . If not, � may converge to the singular spaces 
which are corresponding to smaller singular values. For example, when r = n1 < n2 and 
� ∈ ℝ

n2×(n2−r) , the optimal solution set of �∗ for Eq. (16) includes the null singular spaces 
of � , which makes �� = � hold and the objective function value is 0. Then we have the 
following:

Theorem 2 Given a fixed matrix � ∈ ℝ
n1×n2 with r = min{n1, n2} , and its skinny Singular 

Value Decomposition as � = ���⊤ where � ∈ ℝ
n1×r , � ∈ ℝ

r×r , and � ∈ ℝ
n2×r . Then the 

matrix of right singular vectors � optimizes the following:

The proofs of the above please see “Appendix C”. Theorem 2 shows that, to minimize 
the �2,1 norm ‖�(3)�‖2,1 w.r.t. � , we can choose � as the matrix of right singular vectors of 
�(3).

3.1.2  Details of how to make � data dependent

Through the analyses in Sect. 3.1.1, we make the selection of � data-dependent, and the 
following definitions shows the details.

Definition 3 (VMTQN: variance maximization tensor Q-nuclear norm) Let X ∈ ℝ
n1×n2×n3 

be a third-order tensor and � be an orthogonal matrix. If G = X ×3 � and �(i) denotes the 
frontal slices of G , then the Variance Maximization Tensor Q-Nuclear norm (VMTQN) is 
defined as follows:

(16)min
�∈ℝn2×n2

‖��‖2,1, s.t. �⊤� = �,

(17)min
�∈ℝn2×r

‖��‖2,1, s.t. �⊤� = �, ���⊤ = �.

(18)‖X‖Q,∗, where � = argmax
�⊤�=�

Variance
�����

(i)���F
�
.
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Note that � is determined by X  . With the help of Lemmas 1, 2, and Theorem 2, we can 
incorporate VMTQN into the low rank recovery model.

Definition 4 (Low tensor Q-rank model with adaptive Q) By setting the adaptive � mod-
ule as a low-level sub-problem, the low tensor Q-rank model (10) is transformed into the 
following:

And the corresponding surrogate model (13) is also replaced by the following:

In Eqs.  (19) and  (20), �(3) ∈ ℝ
n1n2×n3 denotes the mode-3 unfolding matrix of tensor 

X ∈ ℝ
n1×n2×n3 , and � ∈ ℝ

n3×r with r = min{n1n2, n3}.

Definition 5 In fact, Theorem 2 implies � = � , where � is the matrix of right singular 
vectors of �(3) . If we let PCA(X, 3, r) ∶= argmin

�⊤�=�r

‖�(3)�‖2,1 be the operator to obtain the 

matrix of right singular vectors � ∈ ℝ
n3×r , where r = min{n1n2, n3} , then the models (19) 

and (20) can be abbreviated as follows:

Remark 1 Notice that � ∈ ℝ
n3×r in Eqs. (19) and (20) may not have full columns, i.e., r < n3 . 

The corresponding definitions of rankQ(X) in Eq. (9) and ‖X‖Q,∗ in Eq. (12) also change to 
the sum of r frontal slices instead of n3 . Then Theorem 1 guarantee the validity of Eq (20).

Remark 2 In fact, from “Appendix C” we can see that, r can be chosen as any value that 
satisfies the condition rank(�(3)) ≤ r ≤ min{n1n2, n3} , as long as � ∈ ℝ

n3×r contains the 
whole column space of the matrix of right singular vectors � and is pseudo-invertible to 
make X = X ×3 � ×3 �

+ hold.

Within this framework, the orthogonal matrix � is related to tensor X  . As we ana-
lyzed, choosing � as the matrix of right singular vectors may make rankQ(X) as low as 
possible. In other words, there should be more “small” frontal slices of X ×3 � , whose 
Frobenius norms are close to 0 to guarantee the low tensor Q-rank structure of data with 
high probability.

Now the question is whether the function ‖X‖Q,∗ in Eq.  (22) is still an envelope of 
the rank function rankQ(X) in Eq. (21) within an appropriate region. The following the-
orem shows that even if ‖X‖Q,∗ is no longer a convex function in the bilevel frame-
work (22) since � is dependent on X  , we can still use it as a surrogate for a lower bound 
of rankQ(X) in Eq. (21).

Theorem  3 Given a column orthonormal matrix � ∈ ℝ
n3×r , r = min{n1n2, n3} , we use 

rankPCA(X) , ‖X‖PCA,� , and ‖X‖PCA,∗ to abbreviate the corresponding concepts as follows:

(19)min
X,�

rankQ(X), s.t. 𝛹 (X) = Y, � ∈ argmin
�⊤�=�

‖�(3)�‖2,1, ���⊤ = �.

(20)min
X,�

‖X‖Q,∗, s.t. 𝛹 (X) = Y, � ∈ argmin
�⊤�=�

‖�(3)�‖2,1, ���⊤ = �.

(21)min
X

rankQ(X), s.t. � (X) = Y, � = PCA(X, 3, r).

(22)min
X

‖X‖Q,∗, s.t. � (X) = Y, � = PCA(X, 3, r).
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Then within the region of D = {X � ‖X‖PCA,� ≤ 1} , the inequality ‖X‖PCA,∗ ≤ rankPCA(X) 
holds. Moreover, for every fixed � , let SQ denote the space {X | � ∈ PCA(X, 3, r)} . Then 
Theorem  1 indicates that ‖X‖PCA,∗ is still the tightest convex envelope of rankPCA(X) in 
SQ ∩D.

Remark 3 For any column orthonormal matrix � ∈ ℝ
n3×r , the corresponding conclusion 

also holds as long as X ×3 (��⊤) = X  . That is to say, ‖X‖Q,∗ ≤ rankQ(X) holds within the 
region {X � ‖X‖Q,� ≤ 1}.

Theorem 3 shows that though ‖X‖PCA,∗ could be non-convex, its function value is always 
below rankPCA(X) . Therefore, model (22) can be regarded as a reasonable low rank tensor 
recovery model. Notice that it is actually a bilevel optimization problem.

3.2  Way II (MOTQN): estimate � by manifold optimization

Recalling the data-dependent low rank recovery model Eq.  (15) with X ∈ ℝ
n1×n2×n3 , our 

main idea is to find a learnable � ∈ ℝ
n3×n3 to minimize rankQ(X) . Inspired by Remark 3, if 

we let � = argmin
�⊤�=�

‖X‖Q,∗ to minimize the surrogate function directly, then we can get the 

following bilevel model:

In Eq.  (26), the lower-level problem w.r.t. � is actually a Stiefel manifold optimization 
problem. Similarly, we can define the corresponding nuclear norm as follows:

Definition 6 (MOTQN: manifold optimization tensor Q-nuclear norm) Let X ∈ ℝ
n1×n2×n3 

be a third-order tensor and � ∈ ℝ
n3×n3 be an orthogonal matrix. Then the Manifold Optimi-

zation Tensor Q-Nuclear norm (MOTQN) is defined as:

Different from VMTQN, the learnable � in Eq.  (26) should be a square matrix, i.e., 
� ∈ ℝ

n3×n3 . If not, as mentioned in Sect.  3.1.1, � may converge to the singular spaces 
which are corresponding to smaller singular values. To avoid this case, we let � ∈ ℝ

n3×n3 . 
Following, the key point of solving this model is how to deal with such an orthogonality 
constrained optimization problem:

(23)rankPCA(X) ∶=rankQ(X), where � = PCA(X, 3, r),

(24)‖X‖PCA,� ∶=‖X‖Q,� , where � = PCA(X, 3, r),

(25)‖X‖PCA,∗ ∶=‖X‖Q,∗, where � = PCA(X, 3, r).

(26)min
X,�

‖X‖Q,∗, s.t. 𝛹 (X) = Y, � = argmin
�⊤�=�

‖X‖Q,∗.

(27)‖X‖Q,∗, where � = argmin
�⊤�=�

‖X‖Q,∗.

(28)� = argmin
�⊤�=�

‖X‖Q,∗ = argmin
�⊤�=�

n3�
i=1

����
(i)���∗, where G = X ×3 �.
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Note that Eq.  (28) is actually a non-convex problem due to the orthogonality constraint. 
The usual way is to perform the manifold Gradient Descent on the Stiefel manifold, which 
evolves along the manifold geodesics (Edelman et al. 1998). However, this method usually 
requires a lot of computation to calculate the projected gradient direction of the objective 
function. Meanwhile, the work  Wen and Yin (2013) develops a technique to solve such 
orthogonality constrained problem iteratively, which generates feasible points by the Cay-
ley transformation and only involves matrix multiplication and inversion. Here we consider 
to use their algorithm to solve the low-level problem.

3.2.1  Optimization with orthogonality constraints

Assume � ∈ ℝ
n×r and denote the gradient of the objective function f (�) = ‖X‖Q,∗ w.r.t. � at 

�k (the kth iteration) by � ∈ ℝ
n×r . Then the projection of � in the tangent space of the Stiefel 

manifold at �k is ��k , where � = ��⊤
k
−�k�

⊤ and � ∈ ℝ
n×n (Wen and Yin 2013). Instead 

of parameterizing the geodesic of the Stiefel manifold along direction � using the exponential 
function, inspired by Wen and Yin (2013), we generate feasible points by the following Cayley 
transformation:

where � is the identity matrix and � ∈ ℝ is a parameter to determine the step size of �k+1 . 
That is to say, �(�) is a re-parameterized geodesic w.r.t. � on the Stiefel manifold. Moreo-
ver, if �⊤

k
�k = � holds, then �(�) has the following properties:

(1) d
d�
�(0) = −��k , (2) �(�) is smooth in � , (3) �(0) = �k , (4) �(𝜏)⊤�(𝜏) = �.

The work Wen and Yin (2013) shows that if � is in a proper range, �(�) can lead to a lower 
objective function value than �(0) on the Stiefel manifold. In summery, solving the problem 
� = argmin

�⊤�=�

‖X‖Q,∗ consists of two steps: (1) find a proper �∗ to make the value of the objec-

tive function f (�(�)) = ‖X‖Q(�),∗ decrease; (2) update �k+1 by Eq. (29), i.e., �k+1 = �(�∗).

3.2.2  Details of how to estimate �∗ and update �
k

(1) We first compute the gradient of the objective function f (�) = ‖X‖Q,∗ w.r.t. � at �k . 
According to the chain rule, we get the following:

Note that G = X ×3 � and �(3) = �(3)� , then we can get 𝜕�(�)

𝜕�
= �⊤

(3)
 where �(3) and �(3) 

are the mode-3 unfolding matrices. Additionally, Eq. (28) shows that f (�) =
∑n3

i=1
‖�(i)‖∗ 

where �(i) are the frontal slices of G . We let �(i) = �(i)�(i) , where �(i) denotes the frontal 
slice of H and �(i)�(i) denotes the left/right singular matrices of �(i) by skinny 
SVD (Petersen and Pedersen 2008). Therefore, H =

�f (�)

�G
 is the same as the matrix case 

and can be obtained from the singular value decomposition.5

(29)�(�) = �(�)�k, where �(�) =
(
� +

�

2
�

)−1(
� −

�

2
�

)
,

(30)
�f (�)

��
=

�G

��
⋅
�f (�)

�G
=

�(�(�))

��
× unfold3

(
�f (�)

�G

)
.

5 The subgradient of matrix nuclear norm ‖�‖∗ w.r.t. � is {��⊤ +� ‖ �⊤� = �,�� = �, ‖�‖ ≤ 1} , 
where � = �𝛴�⊤ is the SVD of �.
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In summary, the gradient of the objective function f (�) w.r.t. � at �k (denoted by � ) 
can be written as follows:

where �(3) and �(3) are the mode-3 unfolding matrices of X  and H , respectively.
(2) Then we construct a geodesic curve along the gradient direction on the Stiefel mani-

fold by Eq. (29):

We consider the following problem for finding a proper �:

where � is a given parameter to ensure that �∗ is small enough and ‖ �

2
�‖ ≤ 1 holds. Then 

we can simplify g(�) = f (�(�)) with the equation 
�
� +

�

2
�

�−1

= � +
∑∞

l=1

�
−

�

2
�

�l

 and 
obtain the following:

Given that �∗ is small enough, we can approximate g(�) via its second order Taylor expan-
sion at � = 0 , i.e., g(�) = g(0) + g�(0) ⋅ � +

1

2
g��(0) ⋅ �2 +O(�3) . It should be mentioned 

that since f (�) is non-convex w.r.t. � , the sign of g��(0) is uncertain. However, Wen and 
Yin (2013) point out that g�(0) = −

1

2
‖�‖2

F
 always holds. Thus we can estimate an optimal 

solution �∗ via:

Here we give the following lemma to omit the calculation process (see “Appendix D”).

Lemma 3 Let g(�) = f (�(�)) = ‖X‖Q(�),∗ and �(�) ≈
(
� − �� +

�2

2
�2

)
�k , where � is 

defined in Eq. (32). Then the first and the second order derivatives of g(�) evaluated at 0 
can be estimated as follows:

where �(3) and �(3) are defined as the same in Eq. (31).

By using Eq. (35) and Lemma 3, we can obtain the optimal step size �∗ and then use 
Eq. (32) to update �k+1 = �(�∗) . Algorithm 1 organizes the whole calculation process.

Back to the bilevel low rank tensor recovery model Eq. (26), for the lower-level problem 
Eq. (28), we finish the iterative updating step by Algorithm 1. Once �k+1 is fixed, the upper-
level problem can be solved easily. 

(31)Gradient = � =
𝜕f (�)

𝜕�
=

𝜕G

𝜕�
⋅
𝜕f (�)

𝜕G
= �⊤

(3)
�(3).

(32)�(𝜏) =
(
� +

𝜏

2
�

)−1(
� −

𝜏

2
�

)
�k, where � = ��⊤

k
−�k�

⊤.

(33)�∗ = argmin
0≤�≤�

f (�(�)) = argmin
0≤�≤�

g(�) = argmin
0≤�≤�

‖X‖Q(�),∗,

(34)g(�) = f (�(�)) = f

((
� + 2

∞∑
l=1

(
−
�

2
�

)l

)
�k

)
≈ f

((
� − �� +

�2

2
�2

)
�k

)
.

(35)𝜏∗ = min{𝜀, 𝜏}, where 𝜀 <
2

‖�‖ , and 𝜏 =

�
−

g�(0)

g��(0)
, g��(0) > 0

1

‖�‖ , g��(0) ≤ 0.

(36)g�(0) ≈
⟨
�⊤

(3)
�(3),−��k

⟩
, and g��(0) ≈

⟨
�⊤

(3)
�(3),�

2�k

⟩
,
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3.3  Applicability of VMTQN and MOTQN

In Sect.  3.2  (MOTQN), we mention that � ∈ ℝ
n3×n3 should be a square matrix but not in 

Sect. 3.1 (VMTQN). In this section, we start from this point and analyze the impact of the size 
of X ∈ ℝ

n1×n2×n3 on the applicability of these two methods.

3.3.1  Case 1: r = n
1
n
2
≪ n

3

In this case, VMTQN model in Eq. (22) usually performs better than other methods in terms 
of computational efficiency, including MOTQN and other works (Zhang and Aeron 2017; Xu 
et al. 2019; Song et al. 2019; Lu et al. 2019; Jiang et al. 2020). As we can see from Sect. 3.1 of 
VMTQN model, we need to calculate a skinny right singular matrix � of an unfolding matrix 
�(3) ∈ ℝ

n1n2×n3 . If r < n3 , then not only the computational complexity is not too large, but � 
can play the role of feature selection like Principal Component Analysis, which corresponds to 
the notation � = PCA(X, 3, r).

Meanwhile, MOTQN and the work Zhang and Aeron (2017),Xu et al. (2019), Song et al. 
(2019) and Lu et al. (2019) usually need to have a square factor matrix � , even that (Jiang 
et al. 2020) requires the columns of � to be redundant.

3.3.2  Case 2: n
1
n
2
> n

3
= r or even have the same order of magnitude

In this case, MOTQN model in Eq.  (26) has the best explainability and rationality. On the 
one hand, with the same size of � ∈ ℝ

n3×n3 , MOTQN minimize the tensor Q-nuclear norm 
directly, which corresponds to the definition of low rank structure properly. On the other hand, 
thanks to the algorithm in Wen and Yin (2013), the optimization of MOTQN model has good 
convergence guarantee.

4  Applications to tensor completion

4.1  Low rank tensor completion model

In the third-order tensor tensor completion task, � is an index set consisting of the indices 
{(i, j, k)} which can be observed, and the operator � in Eqs. (21) and (22) is replaced by an 
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orthogonal projection operator P� , where P�(Xijk) = Xijk if (i, j, k) ∈ � and 0 otherwise. 
The observed tensor Y satisfies Y = P�(Y) . Then the tensor completion model based on 
our two ways are given by:

and

where X  is the tensor that has low rank structure. In Eq.  (37), � ∈ ℝ
n3×r is an column 

orthonormal matrix with r = min{n1n2, n3} . While in Eq.  (38), � ∈ ℝ
n3×n3 is a square 

orthogonal matrix. To solve these models by ADMM based method (Lu et al. 2017), we 
introduce an intermediate tensor E to separate X  from P�(⋅) . Let E = P�(X) − X  , then 
P�(X) = Y is translated to X + E = Y, P�(E) = O , where O is an all-zero tensor. Then we 
get the following two models:

and

Note that in Eq. (40), the constraint � = argmin
�⊤�=�

‖X‖Q,∗ is the same as the objective func-

tion, thus it can be omitted. Nevertheless, in order to keep Eqs.  (39) and  (40) unified in 
form and express the dependence of � and X  conveniently, we reserve this constraint here.

4.2  Optimization algorithm

Since � is dependent on X  , it is difficult to solve the models  (39) and (40) w.r.t. {X,�} 
directly. Here we adopt the idea of alternating minimization to solve X  and � alternately. 
We separate the sub-problem of solving � as a sub-step in every K-iteration, and then 
update X  with a fixed � by the ADMM method (Lu et al. 2017, 2018). The partial aug-
mented Lagrangian function of Eqs. (39) and (40) is

where Z is the dual variable and 𝜇 > 0 is the penalty parameter. Then we can update each 
component � , X  , E , and Z alternately. Algorithms 2 and 3 show the details about the opti-
mization methods to Eqs. (39) and (40). In order to improve the efficiency and stable con-
vergence of the algorithm, we introduce a parameter K to control the update frequency 
of � with the help of heuristic design. The different effects of K on the two models are 
explained in Sect. 4.3 and Sect. 4.4, respectively.

Note that there is one operator ���� in the sub-step of updating X  as follows:

(37)(VMTQN) ∶ min
X

‖X‖Q,∗, s.t. P�(X) = Y, � = PCA(X, 3, r),

(38)
(MOTQN) ∶ min

X,�
‖X‖Q,∗

s.t. � = argmin
�⊤�=�

‖X‖Q,∗, P𝛺(X) = Y.

(39)(VMTQN) ∶ min
X,E,�

‖X‖Q,∗, s.t. X + E = Y, P�(E) = O, � = PCA(X, 3, r),

(40)(MOTQN) ∶ min
X,E,�

‖X‖Q,∗, s.t. X + E = Y, P𝛺(E) = O, � = argmin
�⊤�=�

‖X‖Q,∗.

(41)L(X, E,Z,�) = ‖X‖Q,∗ + ⟨Z,Y − X − E⟩ + �

2
‖Y − X − E‖2

F
,
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where � ∈ ℝ
n3×r is a given column orthonormal matrix and ‖X‖Q,∗ is the tensor Q-nuclear 

norm of X  which is defined in Eq.  (12). Algorithm  3 shows the details of solving this 
operator.

(42)X = �����,‖⋅‖Q,∗ (T) ∶= argmin
X

�‖X‖Q,∗ + 1

2
‖X − T‖2

F
,
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4.3  Convergence analysis

4.3.1  VMTQN model

For the models (37) or (39), it is hard to analyze the convergence of the corresponding 
optimization method directly. The constraint on � is non-linear and the objective func-
tion is essentially non-convex w.r.t. � , which increase the difficulty of analysis. How-
ever, the conclusions of Lu et al. (2017), Lin et al. (2015), Xu and Yin (2015), Lin et al. 
(2011) and Absil et al. (2009) guarantee the convergence to some extent.

In practical applications, we can fix �k = � in every K iterations to solve a convex 
problem w.r.t. X  . As long as X  is convergent, by using the following Lemma  4, the 
change of � is bounded.

Lemma 4  (Petersen and Pedersen 2008) Given a matrix � and its Singular Value Decom-
position � = ���⊤ . Let �i denotes the ith column of matrix � and �j denotes the jth sin-
gular value of matrix � . Denote the sub-differential of a variable by �(⋅) , then we have the 
following:

If vij represents the jth element of �i , then ‖‖‖
𝜕(vij)

𝜕(�⊤�)

‖‖‖2 < ∞.

Lemma  4 indicates that, as long as the change of X  is bounded by penalty term 
with proper K and � , the change of � will also be bounded to some extent. Then 
limk→∞ Qk ≈ PCA(Xk, 3, r) gradually meets the constraints.

Unfortunately, Updating the variable �k in Eq. (43) needs to solve a singular linear 
system, while the objective norm ‖X‖Q,∗ in Eq. (39) is non-convex w.r.t. � . Therefore, 
it is difficult to prove the conclusion that the Lagrangian function in Eq. (41) of Algo-
rithm 2 decreases strictly in each iteration. However, we give another Theorem that the 
iterations corresponding to Eqs. (45)–(48) are convergent in the case of fixed �.

Theorem 4 Given a fixed � in every K iterations, the tensor completion model (39) can 
be solved effectively by Algorithm 2 with �k = � in Eq. (43), where � is replaced by P� . 
The rigorous convergence guarantees can be obtained directly due to the convexity as 
follows.

(49)𝜕(�i) =
(
𝜎2
i
� − �⊤�

)+
𝜕(�⊤�)�i.
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Let (X∗, E∗,Z∗) be one KKT point of problem  (39) with fixed � , X̂K =

∑K

k=0
1

𝜇k
Xk+1

∑K

k=0
1

𝜇k

 , and 

ÊK =

∑K

k=0
1

𝜇k
Ek+1

∑K

k=0
1

𝜇k

 , then we have

and

4.3.2  MOTQN model

Different from VMTQN model, as we mentioned in Sect.  3.3.2, MOTQN model has a 
complete guarantee of convergence with the help of Wen and Yin (2013). The updating 
step in Eq. (44) can strictly guarantee the decrease of the objective function value ‖X‖Q,∗ 
with a proper step size �∗.

Lemma 5 (Lemma 3 of Wen and Yin (2013)) Denote the gradient of the objective func-
tion f (�) w.r.t. � at �k by � and let � = ��⊤

k
−�k�

⊤ be a skew-symmetric matrix. If we 
define �(�) by Eq. (32), then �(�) is a descent curve at � = 0 , that is,

Lemma 5 indicates that, as long as � is small enough, Eq.  (44) usually decreases the 
value of f (�(�)) . Notice that Eq. (41) is a partial augmented Lagrangian function, hence 
the value of Lagrangian function will also decreases after Eq. (44). Therefore, we have the 
following theorem to ensure the convergence of Algorithm 2:

Theorem  5 Denote the augmented Lagrangian function of low rank tensor recovery 
model (38) by L(�,X, E,Z,�) , which is shown as follows:

Then the sequence {�k,Xk, Ek,Zk,�k} generated in Algorithm 2 with Eq. (44) satisfies the 
following:

The function value of Eq.  (53) decreases monotonically after each iteration as long as 
� ≥

√
(� + 1)CL , where � is defined in Eq. (48) and CL is a constant w.r.t. X  . By the mono-

tone bounded convergence theorem, Algorithm 2 is convergent.

(50)‖X̂K+1 + ÊK+1 − Y‖2
F
≤ O

⎛
⎜⎜⎝

1∑K

k=0

1

𝜇k

⎞
⎟⎟⎠
,

(51)0 ≤ ‖X̂K+1‖Q,∗ − ‖X∗‖Q,∗ +
�
Z∗, X̂K+1 + ÊK+1 − Y

�
≤ O

⎛⎜⎜⎝
1∑K

k=0

1

𝜇k

⎞⎟⎟⎠
.

(52)f �
�
(�(0)) ∶=

�f (�(�))

��

����=0 = −
1

2
‖�‖2

F
≤ 0.

(53)L(�,X, E,Z,�) = ‖X‖Q,∗ + ⟨Z,Y − X − E⟩ + �

2
‖Y − X − E‖2

F
.

(54)

L(�k,Xk, Ek,Zk,�k) ≥ L(�k+1,Xk+1, Ek+1,Zk+1,�k+1)

+
�k

2
‖‖Ek − Ek+1

‖‖2F +

(
�k

2
−

�k+1 + �k

2�2
k

CL

)
‖‖Xk − Xk+1

‖‖2F .
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4.4  Complexity analysis

The computational complexity of VMTQN in Eq. (43) is O
(
rn1n2n3

)
 , where r denotes 

the number of columns of � ∈ ℝ
n3×r . And the complexity of MOTQN in Eq.  (44) is 

O
(
(n1n2 + n3)n

2
3

)
 . As for TNN based method  Zhang et  al. (2014); Zhang and Aeron 

(2017); Lu et  al. (2016) and Lu et  al. (2018), they use Fourier transform and have a 
complexity of O

(
n1n2n3 log n3

)
 . As can be seen, if r < log n3 , VMTQN can be more effi-

cient than the other two methods. Otherwise, we should use a larger K to control the 
overall calculation speed.

However, when solving our two methods or TNN based method, the most time-
consuming part is in the SVD operator of each iteration, which is correspond-
ing to Eqs.  (45)–(48). In this part, VMTQN based method has a complexity of 
O
(
rn1n2 min{n1, n2}

)
 while MOTQN and TNN based methods has a complexity of 

O
(
n3n1n2 min{n1, n2}

)
 . That is to say, as long as r ≪ n3 , VMTQN based method is usu-

ally more efficient than the other two methods.

4.5  Performance analysis

Considering the low rank tensor recovery models in Eqs. (37) and (38), � is an index 
set consisting of the indices {(i, j, k)} which can be observed, and the orthogonal projec-
tion operator P� is defined as P�(Xijk) = Xijk if (i, j, k) ∈ � and 0 otherwise. In this part, 
we discuss at least how many observation samples |�| are needed to recover the ground-
truth. In fact, �∗ obtained from the convergence of Algorithm 2 has a decisive effect on 
the number of observation samples needed, since the optimal solution satisfies the KKT 
conditions under �∗ . That is to say, we only need to analyze the performance guarantee 
in the case of fixed �.

With a fixed � , the exact tensor completion guarantee for model  (13) is shown in 
Theorem 6. Lu et al. (2019) also have similar conclusions.

Theorem  6 Given a fixed orthogonal matrix � ∈ ℝ
n3×n3 and � ∼ Ber(p) , assume that 

tensor X ∈ ℝ
n1×n2×n3  (n1 ≥ n2 ) has a low tensor Q-rank structure and rankQ(X) = R . If 

|�| ≥ O(�Rn1 log(n1n3)) , then X  is the unique solution to Eq. (13) with high probability, 
where � is replaced by P� , and � is the corresponding incoherence parameter (see Sup-
plementary Materials).

Through the proof of Lu et al. (2019) and Lu et al. (2018), the sampling rate p should 
be proportional to max{‖PT(�ijk)‖2F}. (The definition of projection operators PT  and �ijk 
can be found in  Lu et  al. (2016) and Lu et  al. (2018) or in Supplementary materials, 
where T  is the singular space of the ground-truth.) The projection of �ijk onto subspace 
T  is greatly influenced by the dimension. Obviously, when T  is the whole space, 
‖‖‖PTQ

(�ijk)
‖‖‖
2

F
= 1 . That is to say, a small dimension of TQ may lead to a small 

maxijk

{‖‖‖PTQ
(�ijk)

‖‖‖
2

F

}
.

Proposition  15 in  Lu et  al. (2018) also implies that for any � ∈ T  , we need to have 
P�(�) = 0 ⇔ � = 0 . These two conditions indicate that once the spatial dimension of T  
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is large (rankQ(X) = R is large), a larger sampling rate p is needed. And Fig. 3 in Lu et al. 
(2018) verifies the rationality of this deduction by experiment.

In fact, the smoothness of data along the third dimension has a great influence on the 
Dimension of Freedom (DoF) of space T  . Non-smooth change along the third dimension is 
likely to increase the spatial dimension of T  under the Fourier basis vectors, which makes 
the TNN based methods ineffective. Our experiments on CIFAR-10 (Table 1) confirm this 
conclusion.
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Fig. 3  The numbers plotted on the above figure are the average PSNRs within 10 random trials. The gray 
scale reflects the quality of completion results of three different models (VMTQN, MOTQN, TNN), where 
n1 = n2 = n3 = 50 and the white area represents a maximum PSNR of 40

Table 1  Comparisons of PSNR results on CIFAR images with different sampling rates

Top: experiments on the case Y1 ∈ ℝ
32×32×3000 . Bottom: experiments on the case Y2 ∈ ℝ

32×32×10,000

Sampling rate p 0.1 0.2 0.3 0.4 0.5 0.6

TQN with random � 10.86 15.47 18.09 20.20 22.30 24.49
TQN with Oracle � (ideal) 25.39 30.85 39.43 109.52 >200 >200
VMTQN (ours) 18.83 21.10 22.89 24.56 26.26 28.07
TNN (Fourier) Lu et al. (2018) 9.84 12.73 15.68 18.71 21.60 24.26
TNN-C (cosine) Xu et al. (2019) 9.63 11.92 15.17 18.45 22.09 23.95
TTNN (wavelet) Song et al. (2019) 8.97 13.08 17.19 19.26 23.13 25.67
F-TNN (framelet) Jiang et al. (2020) 8.84 11.95 16.56 20.61 23.77 26.02
Tmac Xu et al. (2017) 17.81 19.29 23.06 24.89 25.74 27.46
SiLRTC Liu et al. (2013) 16.87 20.04 21.99 23.80 25.62 27.57

Sampling rate p 0.1 0.2 0.3 0.4 0.5 0.6

TQN with random � 10.84 15.45 18.06 20.19 22.29 24.48
TQN with Oracle � (ideal) 45.75 >200 >200 >200 >200 >200
VMTQN (ours) 19.06 21.43 23.27 24.97 26.65 28.42
TNN (Fourier) Lu et al. (2018) 8.18 10.10 12.19 14.63 17.59 21.20
TNN-C (cosine) Xu et al. (2019) 8.12 9.95 11.80 13.62 18.07 22.10
TTNN (wavelet) Song et al. (2019) 9.01 10.80 13.27 15.88 20.21 24.04
F-TNN (framelet) Jiang et al. (2020) 9.17 11.06 15.10 17.44 20.85 23.77
Tmac Xu et al. (2017) 12.91 18.49 22.97 25.25 27.06 27.97
SiLRTC Liu et al. (2013) 14.02 19.65 22.44 24.38 26.21 28.12
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As for the models (39) and (40) with adaptive � , our motivation is to find a better � 
in order to make rankQ(X) = R smaller and make the spatial dimension of correspond-
ing TQ as small as possible, where TQ is the singular space of the ground-truth under � . 
In other words, for more complex data with non-smoothness along the third dimension, 
the adaptive � may reduce the dimension of TQ and make max{‖PTQ

(�ijk)‖2F} smaller than 
max{‖PT(�ijk)‖2F} , leading to a lower bound for the sampling rate p.

5  Experiments

In this section, we conduct numerical experiments to evaluate our proposed models  (39) 
and (40). The platform is Matlab R2018b under Windows 10 on a PC with an Intel i5-7500 
CPU and 16 GB memory. The experimental code of most comparison methods comes 
from the released version. As for some methods without released code, we reproduce it in 
Matlab 2018b strictly according to the algorithm in their respective papers.

Assume that the observed corrupted tensor is Y , and the true tensor is X0 ∈ ℝ
n1×n2×n3 . 

We represent the recovered tensor (output of the algorithms) as X  , and use Peak Signal-to-
Noise Ratio (PSNR) to measure the reconstruction error:

5.1  Synthetic experiments

In this part we compare our proposed methods  (named VMTQN model and MOTQN 
model) with the mainstream algorithm TNN (Zhang et al. 2014; Lu et al. 2018).

We examine the completion task with varying tensor Q-rank of tensor Y and vary-
ing sampling rate p. Firstly, we generate a random tensor M ∈ ℝ

50×50×50 , whose entries 
are independently sampled from an N(0, 1∕50) distribution. Actually, the data gener-
ated in this way is usually non-smooth along each dimension. Then we choose p in 
[0.01 : 0.02 : 0.99] and r in [1 : 1 : 50], where the column orthonormal matrix � ∈ ℝ

50×r 
satisfies � = PCA(M, 3, r) . We let Y = M ×3 � ×3 �

⊤ be the true tensor. After that, 
we create the index set � by using a Bernoulli model to randomly sample a subset from 
{1,… , 50} × {1,… , 50} × {1,… , 50} . The sampling rate p is |�|∕503 . For each pair of 
(p, r), we simulate 10 times with different random seeds and take the average as the final 
result. As for the parameters of VMTQN and MOTQN models in Algorithm  2, we set 
� = 1.1 , �0 = 10−4 , �max = 1010 , and � = 10−8.

As shown in the upper left corner regions of VMTQN model and MOTQN model in 
Fig. 3, Algorithm 2 can effectively solve our proposed recovery models (37) and (38). The 
larger tensor Q-rank it is, the larger the sampling rate p is needed, which is consistent with 
our Performance Analysis in Theorem 6. By comparing the results of three methods, we 
can find that TNN has very poor robustness to the data with non-smooth change. And the 
results of the left and middle images demonstrate our assumptions  (Motivation), which 
may imply that better low rank structure leads to better recovery.

(55)PSNR = 10 log10

�
n1n2n3‖X0‖2∞
‖X − X0‖2F

�
.
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5.2  Real‑world datasets

In this part we compare our proposed method with TNN  (Lu et  al. 2018) with Fourier 
matrix, TTNN  (Song et  al. 2019) with wavelet matrix, TNN-C  (Xu et  al. 2019) with 
cosine matrix, F-TNN (Jiang et al. 2020) with framelet matrix, SiLRTC (Liu et al. 2013), 
Tmac (Xu et al. 2017), and Latent Trace Norm (Tomioka and Suzuki 2013). We validate 
our algorithm on three datasets: (1) CIFAR-10;6 (2) COIL-20;7 (3) HMDB51.8 We set 
� = 1.1 , �0 = 10−4 , �max = 1010 , � = 10−8 , and K = 1 in our methods. As for TNN, SiL-
RTC, Tmac, F-TNN, and Latent Trace Norm, we use the default settings as in their released 
code, e.g., Lu et al.9 and Tomioka et al.10 For TTNN and TNN-C of unreleased code, we 
implement their algorithms in MATLAB strictly according to the corresponding papers.

5.2.1  Influences of �

Corresponding to our motivation, we use a Random orthogonal matrix and an Oracle 
matrix  (the matrix of right singular vectors of the ground-truth unfolding matrix) to test 
the influence of � . The results of TQN models with different orthogonal matrix in Tables 1 
and 2 show that � play an important role in tensor recovery, where the best recovery results 
among the comparison methods are marked in bold. Comparing with Random � case, our 
Algorithm 2 is effective for searching a better � . Table 1 also shows that a proper � may 
make recover the ground-truth more easily. For example, with sampling rate p ≥ 0.2 on 
10, 000 images, an Oracle matrix � can lead to an “exact” recovery (PSNR > 200).

5.2.2  CIFAR‑10

We consider the worst case for TNN based methods that there is almost no smoothness 
along the third dimension of the data. We randomly selected 3000 and 10,000 images from 
one batch of CIFAR-10 (Krizhevsky and Hinton 2009) as our true tensors Y1 ∈ ℝ

32×32×3000 
and Y2 ∈ ℝ

32×32×10,000 , respectively. Then we solve the model  (39) with our proposed 
Algorithm 2. The results are shown in Table 1. Note that in the latter case r = n1n2 ≪ n3 
holds, MOTQN model has high computational complexity. Thus we will not compare it in 
this part.

Table  1 verifies our hypothesis that TNN regularization performs badly on data with 
non-smooth change along the third dimension. Our VMTQN method is obviously better 
than the other methods in the case of low sampling rate. Moreover, by comparing the two 
groups of experiments, we can see that VMTQN, TMac, and SiLRTC perform better in Y2 . 
This may be due to that increasing the data volume will make the principal components 
more significant. Meanwhile, in the methods of Fourier matrix, cosine matrix and wavelet 
matrix, they almost have no recovery effect when the sampling rate p is lower. This indi-
cates that these specified projection bases can not learn the data features in the case of poor 
continuity and insufficient sampling.

6 http:// www. cs. toron to. edu/ ~kriz/ cifar. html.
7 http:// www. cs. colum bia. edu/ CAVE/ softw are/ softl ib/ coil- 20. php.
8 http:// serre- lab. clps. brown. edu/ resou rce/ hmdb-a- large- human- motion- datab ase/.
9 https:// github. com/ canyi lu/ LibAD MM.
10 https:// github. com/ ryotat/ tensor.

http://www.cs.toronto.edu/%7ekriz/cifar.html
http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://github.com/canyilu/LibADMM
https://github.com/ryotat/tensor
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The above analyses confirm that our proposed regularization are data-dependent and 
can lead to a better low rank structure which makes recover easily.

5.2.3  Running time on CIFAR

As shown in Fig. 4, we test the running times of different models. The two figures indi-
cate that, when n3 ≫ n1n2 , our VMTQN model has higher computational efficiency in 
each iteration and better accuracy than TNN and SiLRTC. As mentioned in our previous 
complexity analysis, VMTQN method has a great speed advantage in this case. Moreover, 
for the case n3 < n1n2 , Fig. 8 implies that setting r < n1n2 can balance computational effi-
ciency and recovery accuracy.

5.2.4  COIL‑20 and short video from HMDB51

COIL-20  (Nene et  al. 1996) contains 1440 images of 20 objects which are taken 
from different angles. The size of each image is processed as 128 × 128 , which means 
Y ∈ ℝ

128×128×1440 . The upper part of Table  2 shows the results of the numerical experi-
ments. We select a background-changing video from HMDB51 (Kuehne et al. 2011) for 
the video inpainting task, where Y ∈ ℝ

240×320×146 . Figure  2 shows some frames of this 
video. The lower part of Table 2 shows the results. And Figs. 5, 6 and 7 are the the experi-
mental results of COIL-20 and Short Video from HMDB51, respectively.
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Fig. 4  Running time comparisons of different methods, where Y ∈ ℝ
32×32×10,000 and sampling rate p = 0.3

Fig. 5  Examples of the corrupted 
data in our completion tasks. The 
left figure is from COIL dataset 
while the right figure is from the 
short video. The sampling rate is 
p = 0.2 in the left and p = 0.5 in 
the right

Corrupted COIL Corrupted Video
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From the two visual figures we can see that, our VMTQN method and MOTQN 
method perform the best among all comparative methods. Especially when the sampling 
rate p = 0.2 in Fig. 6, our methods has significant superiority in visual evaluation. What’s 
more, “Latent Trace Norm” based method performs much better than TNN in COIL, which 

Fig. 6  Examples of COIL com-
pletion results. Method names 
correspond to the top of each 
figure. The sampling rate p = 0.2

Clean image

TQN Random VMTQN (Ours) MOTQN (Ours)

TNN TNN-C (Cosine)

F-TNN (Framelet) SiLRTC LTN

Fig. 7  Examples of video 
inpainting task with sampling 
rate p = 0.5

Clean image

TQN Random VMTQN (Ours) MOTQN (Ours)

TNN TNN-C (Cosine)

F-TNN (Framelet) SiLRTC LTN



1893Machine Learning (2021) 110:1867–1900 

1 3

validates our assumption that with the help of data-dependent � tensor trace norm is much 
more robust than TNN in processing non-smooth data.

Overall, both our methods and t-SVD based methods (e.g., TNN) perform better than 
the others (e.g., SiLRTC) on these two datasets. It is mainly because the definitions of ten-
sor singular value in tSVD based methods can make better use of the tensor internal struc-
ture, and this is also the main difference between tensor Q-nuclear norm (TQN) and sum of 
the nuclear norm (SNN).

Meanwhile, our method is obviously better than the others at all sampling rates, which 
reflects the superiority of our data dependent �.

5.2.5  Influence of r in � ∈ ℝ
n3×r

Remarks  2 and  3 imply that r of � ∈ ℝ
n3×r in VMTQN denotes the apriori assumption 

of the subspace dimension of the ground-truth. It means that the dimensions of the fron-
tal slice subspace of the true tensor T  (also as the column subspace of mode-3 unfolding 
matrix �(3) ) are no more than r.

Table 2  Comparisons of PSNR results on COIL images and video inpainting with different sampling rates

Up: the COIL dataset with Y ∈ ℝ
128×128×1440 . Down: a short video from HMDB51 with Y ∈ ℝ

240×320×126

Sampling rate p 0.1 0.2 0.3 0.4 0.5 0.6

TQN with random � 16.05 20.07 23.02 25.57 27.95 30.34
TQN with Oracle � (ideal) 22.97 25.32 27.18 28.90 30.68 32.51
VMTQN (ours) 22.79 25.34 27.29 29.08 30.86 32.74
MOTQN (ours) 21.91 25.41 27.86 30.13 31.79 33.64
TNN (Fourier) Lu et al. (2018) 19.20 22.08 24.45 26.61 28.72 30.91
TNN-C (cosine) Xu et al. (2019) 19.02 22.11 24.23 27.04 28.95 30.97
TTNN (wavelet) Song et al. (2019) 18.15 21.42 24.47 26.93 29.11 31.10
F-TNN (framelet) Jiang et al. (2020) 17.62 20.58 22.87 24.67 27.41 29.90
Tmac Xu et al. (2017) 19.04 22.48 24.97 26.70 27.91 28.86
SiLRTC Liu et al. (2013) 18.87 21.80 23.89 25.67 27.37 29.14
Latent trace norm Tomioka and Suzuki (2013) 19.09 22.98 25.75 28.11 30.40 32.42

Sampling rate p 0.1 0.2 0.3 0.4 0.5 0.6

TQN with random � 18.85 22.76 25.87 28.73 31.55 34.48
TQN with Oracle � (ideal) 23.44 27.61 31.37 35.11 38.92 42.74
VMTQN (ours) 23.97 28.09 31.76 35.33 39.06 42.87
MOTQN (ours) 24.10 27.88 32.24 35.19 39.28 42.65
TNN (Fourier) Lu et al. (2018) 22.40 25.58 28.28 30.88 33.55 36.41
TNN-C (cosine) Xu et al. (2019) 22.15 25.34 28.17 30.96 33.51 36.62
TTNN (wavelet) Song et al. (2019) 19.80 21.95 24.92 30.13 32.78 36.84
F-TNN (framelet) Jiang et al. (2020) 19.01 23.44 25.94 29.32 32.06 35.13
Tmac Xu et al. (2017) 18.54 22.79 26.08 29.70 31.17 34.26
SiLRTC Liu et al. (2013) 18.42 22.33 25.76 29.15 32.59 36.15
Latent trace norm Tomioka and Suzuki (2013) 18.94 22.72 25.65 28.26 30.79 33.48
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Figure 8 illustrates the relations among running times, different r, and the singular val-
ues of �(3) . We project the solution Xk (in Eq. (45)) onto the subspace of �k , which means 
X̂k ∶= Xk ×3 (�k�

⊤
k
) . Meanwhile, under different r in � ∈ ℝ

n3×r , Fig. 9 shows the PSNR 
results of the completion task with varying tensor Q-rank of tensor and varying sampling 
rate. The settings in Fig. 9 are consistent with those in Sect. 5.1, and only the size of � is 
different.
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Fig. 8  The relations among running times, different r, and the singular values of �(3) on COIL, where 
p = 0.2
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Fig. 9  The gray scale reflects the quality (PSNR) of completion results, where n1 = n2 = n3 = 50 and the 
white area represents a maximum PSNR of 40. There are three different sizes of � in VMTQN model to 
show the influences
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As shown in the conduct of Fig. 8, the column subspace of �(3) is more than 360. If 
r ≤ 360 , the algorithm will converge to a bad point which only has an r-dimensional sub-
space. Therefore, in our previous experiments, we usually set r = min{n1n2, n3} to make 
sure that r is greater than the true tensor’s subspace dimension. This apriori assump-
tion is commonly used in factorization-based algorithms. What’s more, the running time 
decreases with the decrease of r. Although r = 1440 needs more time to converge than 
TNN, it obtains a better recovery. And a smaller r does speed up the calculation but harms 
the accuracy.

The results of Fig. 9 intuitively reflect the selection criterion of r in VMTQN, that is, r 
should be larger than the subspace dimension of the true tensor to get the exact recovery. 
According to the constraint ���⊤ = � in Sect. 3.1, if the subspace dimension of the true 
tensor is larger than r, then this constraint can never be satisfied. Additionally, there must 
be a distance between the output of Algorithm 2 and the truth tensor, which corresponding 
to the black areas in the upper right corner of the first two sub-figures. From the left two 
sub-figures we can see that, if the dimension of true tensor is not greater than r, the recov-
ery performance is consistent with that in the third sub-figure. Combined with the above 
analyses, r = min{n1n2, n3} can not only save computational efficiency in some cases, but 
also make the recovery performance of the model in “the white area”, corresponding to the 
exact recovery.

5.3  Smooth data experiments

To verify the effectiveness of our proposed methods in smooth data, we select a video 
from HMDB51 to conduct the experiments, while the background of this video remains 
unchanged. Figure  10 shows the PSNR and visualization results of the video inpainting 
tasks. Here we only compare TNN based method  (Lu et  al. 2018), since in recent years 
TNN is considered as a benchmark for handling such smooth data. The results in Fig. 10 
show that VMTQN method performs best, and with the increase of sampling rate p, 
MOTQN method outperforms TNN based method, which means our proposed methods are 
still competitive in processing smooth data.

6  Conclusions

We analyze the advantages and limitations of the current mainstream low rank regularizers, 
and then introduce a new definition of data dependent tensor rank named tensor Q-rank. To 
get a more significant low rank structure w.r.t. rankQ , we further introduce two explainable 
selection methods of � and make � to be a learnable variable w.r.t. the data. Specifically, 

Clean image Corrupted TNN VMTQN (Ours) MOTQN (Ours)

Fig. 10  Comparisons of PSNR and visualization results of a smooth video inpainting. Up: PSNR results 
with different sampling rates. Down: visualization results with the sampling rate p = 0.5
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maximizing the variance of singular value distribution leads to VMTQN, while minimizing 
the value of nuclear norm through manifold optimization leads to MOTQN. We provide an 
envelope of our rank function and apply it to the tensor completion problem. By analyzing 
the proof of exact recovery theorem,we explain why our method may perform better than 
TNN based methods in non-smooth data  (along the third dimension) with low sampling 
rates, and conduct experiments to verify our conclusions.

Appendix A: Proof of Lemma 1

Proof Suppose that ā =
1

n

∑n

i=1
ai , hence the variance of {a1,… , an} can be expressed as 

Var[ai] =
∑n

i=1
(ai − ā)2 . With 

∑n

i=1
a2
i
= C holds, we have the following:

Moreover, the feasible region of {a1,… , an} is an first quadrant Euclidean spherical sur-
face: {(a1,… , an)�∑n

i=1
a2
i
= C, ai ≥ 0} . Thus the objective function ā =

1

n

∑n

i=1
ai is actu-

ally a linear hyperplane optimization problem, whose optimal solution contains all inter-
section of the sphere and each axis, which corresponds to only one non-zero coordinate in 
{a1,… , an} .   ◻

Appendix B: Proof of Lemma 2

Proof Firstly, � = ���⊤ denotes the full Singular Value Decomposition of matrix � with 
� ∈ ℝ

n1×n1 , � ∈ ℝ
n1×n2 , and � ∈ ℝ

n2×n2 . And � = �⊤� is also an orthogonal matrix, where 
� ∈ ℝ

n2×n2 . We use Pij to represent the (i, j)th element of matrix � , and use �i to represent 
the ith column of matrix � . Then �� = ���⊤� = ��� holds and we have the following:

If n1 ≥ n2 , let �i = �ii be the (i, i)th element value of � with i = 1,… , n2 . Or if n1 < n2 , let 

�� =

(
�

�

)
∈ ℝ

n2×n2 and �i = ��
ii
 with i = 1,… , n2 . In this case, 

∑n2
i=1

‖��i‖2 = ∑n2
i=1

‖���i‖2 . Thus, we can always get {�1,… , �n2} and have the equation 
∑n2

i=1
‖��i‖2 = ∑n2

i=1

�∑n2
j=1

(�jPji)
2.

We then prove that � = � optimize the problem (16). By using Eq. (56), the objective 
function can be written as 

∑n2
i=1

‖��i‖2 . We give the following deduction:

max Var[ai] ⇒ max&

n∑
i=1

(ai − ā)2 ⇒ max

n∑
i=1

(a2
i
+ ā2 − 2aiā)

⇒ max&

(
n∑
i=1

a2
i

)
+

(
n∑
i=1

ā2

)
− 2

(
n∑
i=1

aiā

)

⇒ max&nā2 − 2ā(nā) ⇒ max −nā2 ⇒ min ā (due to ai ≥ 0).

(56)‖��‖2,1 = ‖���‖2,1 =
n2�
i=1

‖���i‖2 =
n2�
i=1

‖��i‖2.
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(a) holds due to that � is an orthogonal matrix with normalized columns. (b) holds because 
of Cauchy inequality. (c) holds with exchanging the order of two summations. Finally (d) 
holds owing to the row normalization of � . Notice that the equality in (b) holds if and 
only if the two vectors (�1P1i,… , �n2Pn2i

) and (P1i,… ,Pn2i
) are parallel. It can be seen 

that when � = � , the condition are satisfied. In other words, �⊤� = � optimize the prob-
lem (16), which implies � = � .   ◻

Appendix C: Proof of Theorem 2

Proof We divide r = min{n1, n2} into two cases and prove them respectively. And we use 
the same notation as in the previous proofs.

(1) If n1 < n2 and r = n1 , then � ∈ ℝ
n1×n1 , � ∈ ℝ

n2×n1 , and � ∈ ℝ
n2×n1 . In this case, 

� ∈ ℝ
n1×n1 . Let �� =

(
� �

)
∈ ℝ

n1×n2 , �� =
(
� �

⟂

)
∈ ℝ

n2×n2 , and �� =
(
� �

⟂

)
∈ ℝ

n2×n2 . 
Note that the constraint ���⊤ = � in Eq. (17) implies �⊤�

⟂
= � and �⊤

⟂
� = � , then we 

have the following:

That is to say, minimize ‖��‖2,1 w.r.t. � in Eq. (17) is equivalent to minimize ‖�′�′⊤�′‖2,1 
w.r.t. �′ under the constraints �⊤�

⟂
= � and �⊤

⟂
� = � . By using Lemma 2, �� = �� mini-

mize the objective function ‖�′�′⊤�′‖2,1 , which also satisfies the constraints. In other 
words, � = � optimize the problem 17.

(2) If n1 ≥ n2 and r = n2 , then � ∈ ℝ
n1×n2 , � ∈ ℝ

n2×n2 , and � ∈ ℝ
n2×n2 . In this case, we 

have

The remaining proofs are similar to the details in “Appendix B”.   ◻

Appendix D: Proof of Lemma 3

Proof Let g(�) = f (�(�)) = ‖X‖Q(�),∗ and �(�) ≈
(
� − �� +

�2

2
�2

)
�k , where � is defined 

in Eq. (32). We consider the following approximation:

n2�
i=1

‖��i‖2 =
n2�
i=1

���� n2�
j=1

(�jPji)
2
(a)
=

n2�
i=1

���� n2�
j=1

(�jPji)
2 ×

n2�
j=1

P2
ji

(b)

≥

n2�
i=1

n2�
j=1

(�jP
2
ji
)
(c)
=

n2�
j=1

�j

�
n2�
i=1

P2
ji

�
(d)
=

n2�
j=1

�j.

(57)‖��‖2,1 = ‖���⊤�‖2,1 = ‖��⊤�‖2,1 = ‖����⊤��‖2,1.

‖��‖2,1 =‖���‖2,1 =
n2�
i=1

‖���i‖2 =
n2�
i=1

‖��i‖2.
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where �(0) = �k and then Eq. (31) ensure 𝜕f (�(𝜏))

𝜕�(𝜏)

|||𝜏=0 = �⊤
(3)
�(3) . Then we have:

where C� is a constant independent of � . Then the first and the second order derivatives of 
g(�) evaluated at 0 can be estimated as follows:

  ◻
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